OUR GRANDKIDS WILL BE ROBOTS…

Robot1

It’s not about physical love. Every day people use more and more technology in their lives which makes them look like robots described in science fiction. You can see such cyborgs of 21st century on the subway playing with their iPhones or staring into space while listening their music. As for artificial limbs, organs and eyes? Already a reality.

Furthermore, robots have become more sophisticated. They can walk, talk and learn. Man and robot have become more alike and at some moment the difference will disappear. When this will happen – the problem will disappear. Sooner or later we will stop worrying about that, and that will be normal. So meet you on the other side!

Advertisements

Communication Satellites…

A communications satellite or comsat is an artificial satellite sent to space for the purpose of telecommunications. Modern communications satellites use a variety of orbits including geostationary orbits, Molniya orbits, elliptical orbits and low (polar and non-polar) Earth orbits.
For fixed (point-to-point) services, communications satellites provide a microwave radio relay technology complementary to that of communication cables. They are also used for mobile applications such as communications to ships, vehicles, planes and hand-held terminals, and for TV and radio broadcasting.

satellite_11a

History

The Merriam-Webster dictionary defines a satellite as a celestial body orbiting another of larger size or a manufactured object or vehicle intended to orbit the earth, the moon, or another celestial body.

Today’s satellite communications can trace their origins all the way back to the Moon. A project named Communication Moon Relay was a telecommunication project carried out by the United States Navy. Its objective was to develop a secure and reliable method of wireless communication by using the Moon as a natural communications satellite.

100610-F-0000H-003

The first artificial satellite used solely to further advances in global communications was a balloon named Echo 1.[2] Echo 1 was the world’s first artificial communications satellite capable of relaying signals to other points on Earth. It soared 1,000 miles (1,609 km) above the planet after its Aug. 12, 1960 launch, yet relied on humanity’s oldest flight technology — ballooning. Launched by NASA, Echo 1 was a giant metallic balloon 100 feet (30 meters) across. The world’s first inflatable satellite — or “satelloon”, as they were informally known — helped lay the foundation of today’s satellite communications. The idea behind a communications satellite is simple: Send data up into space and beam it back down to another spot on the globe. Echo 1 accomplished this by essentially serving as an enormous mirror 10 stories tall that could be used to bounce communications signals off of.

DSCS_SatInSpaceLockheedMartin

The first American satellite to relay communications was Project SCORE in 1958, which used a tape recorder to store and forward voice messages. It was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower.[3] NASA launched the Echo satellite in 1960; the 100-foot (30 m) aluminised PET film balloon served as a passive reflector for radio communications. Courier 1B, built by Philco, also launched in 1960, was the world’s first active repeater satellite.

AEHF_1

It is commonly believed that the first “communications” satellite was Sputnik 1. Put into orbit by the Soviet Union on October 4, 1957, it was equipped with an onboard radio-transmitter that worked on two frequencies: 20.005 and 40.002 MHz. Sputnik 1 was launched as a step in the exploration of space and rocket development. While incredibly important it was not placed in orbit for the purpose of sending data from one point on earth to another.

Global Positioning System…

GPS_Satellite_NASA_art-iif

The Global Positioning System (GPS) is a space-based satellite navigation system that provides location and time information in all weather conditions, anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. The system provides critical capabilities to military, civil and commercial users around the world. It is maintained by the United States government and is freely accessible to anyone with a GPS receiver.

6199172

The GPS project was developed in 1973 to overcome the limitations of previous navigation systems, integrating ideas from several predecessors, including a number of classified engineering design studies from the 1960s. GPS was created and realized by the U.S. Department of Defense (DoD) and was originally run with 24 satellites. It became fully operational in 1995. Bradford Parkinson, Roger L. Easton, and Ivan A. Getting are credited with inventing it.

Space telescope orbiting the earth

Advances in technology and new demands on the existing system have now led to efforts to modernize the GPS system and implement the next generation of GPS III satellites and Next Generation Operational Control System (OCX). Announcements from Vice President Al Gore and the White House in 1998 initiated these changes. In 2000, the U.S. Congress authorized the modernization effort, GPS III.